Proof of the Sum - Product Theorem

نویسندگان

  • Aditya Bhaskara
  • Arnab Bhattacharyya
  • Moritz Hardt
  • Cathy Lennon
  • Kevin Matulef
  • Rajsekar Manokaran
  • Indraneel Mukherjee
  • Wolfgang Mulzer
  • Aaron Roth
  • Shubhangi Saraf
  • David Steurer
چکیده

These are notes from a mini course on additive combinatorics given in Princeton University on August 23-24, 2007. The lectures were Boaz Barak (Princeton University), Luca Trevisan (University of California at Berkeley) and Avi Wigderson (Institute for Advanced Study, Princeton). The notes were taken by Aditya Bhaskara, Arnab Bhattacharyya, Moritz Hardt, Cathy Lennon, Kevin Matulef, Rajsekar Manokaran, Indraneel Mukherjee, Wolfgang Mulzer, Aaron Roth, Shubhangi Saraf, David Steurer, and Aravindan Vijayaraghavan.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new proof for the Banach-Zarecki theorem: A light on integrability and continuity

To demonstrate more visibly the close relation between thecontinuity and integrability, a new proof for the Banach-Zareckitheorem is presented on the basis of the Radon-Nikodym theoremwhich emphasizes on measure-type properties of the Lebesgueintegral. The Banach-Zarecki theorem says that a real-valuedfunction $F$ is absolutely continuous on a finite closed intervalif and only if it is continuo...

متن کامل

Distributive lattices with strong endomorphism kernel property as direct sums

Unbounded distributive lattices which have strong endomorphism kernel property (SEKP) introduced by Blyth and Silva in [3] were fully characterized in [11] using Priestley duality (see Theorem  2.8}). We shall determine the structure of special elements (which are introduced after  Theorem 2.8 under the name strong elements) and show that these lattices can be considered as a direct product of ...

متن کامل

The Basic Theorem and its Consequences

Let T be a compact Hausdorff topological space and let M denote an n–dimensional subspace of the space C(T ), the space of real–valued continuous functions on T and let the space be equipped with the uniform norm. Zukhovitskii [7] attributes the Basic Theorem to E.Ya.Remez and gives a proof by duality. He also gives a proof due to Shnirel’man, which uses Helly’s Theorem, now the paper obtains a...

متن کامل

Another proof of Banaschewski's surjection theorem

We present a new proof of Banaschewski's theorem stating that the completion lift of a uniform surjection is a surjection. The new procedure allows to extend the fact (and, similarly, the related theorem on closed uniform sublocales of complete uniform frames) to quasi-uniformities ("not necessarily symmetric uniformities"). Further, we show how a (regular) Cauchy point on a closed uniform subl...

متن کامل

Stability Proof of Gain-Scheduling Controller for Skid-to-Turn Missile Using Kharitonov Theorem

Gain scheduling is one of the most popular nonlinear control design approaches which has been widely and successfully applied in fields ranging from aerospace to process control. Despite the wide application of gain scheduling controllers, there is a notable lack of analysis on the stability of these controllers. The most common application of these kinds of controllers is in the field of fligh...

متن کامل

A SHORT PROOF FOR THE EXISTENCE OF HAAR MEASURE ON COMMUTATIVE HYPERGROUPS

In this short note, we have given a short proof for the existence of the Haar measure on commutative locally compact hypergroups based on functional analysis methods by using Markov-Kakutani fixed point theorem.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007